
Build apps using Asynchronous JavaScript with
XML (AJAX)
Learn to construct real time validation-enabled Web
applications with AJAX

Skill Level: Introductory

Naveen Balani (naveenb@webifysolutions.com)
Technical Architect
Webify Solutions

Rajeev Hathi (rajeev_hathi@hotmail.com)
Senior Systems Analyst
Satyam

15 Nov 2005

AJAX (Asynchronous JavaScript with XML) enables a dynamic, asynchronous Web
experience without the need for page refreshes. In this tutorial, you learn to build
AJAX-based Web applications -- complete with real time validation and without page
refreshes -- by following the construction of a sample book order application.

Section 1. Before you start

About this tutorial

In this tutorial, we explain how to develop and design Web applications based on
Asynchronous JavaScript with XML, or AJAX. You'll build a sample Web-based book
order application which provides real time validation and page refresh, for efficient
and smooth user interaction.

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 1 of 14

mailto:naveenb@webifysolutions.com
mailto:rajeev_hathi@hotmail.com
http://www.ibm.com/legal/copytrade.shtml

Prerequisites

We will use Tomcat to run the AJAX application. Tomcat is the servlet container that
is used in the official reference implementation for the Java Servlet and JavaServer
Pages technologies. Download jakarta-tomcat-5.0.28.exe from the Jakarta Site and
run it to install Tomcat to any location you'd like -- c:\tomcat5.0, for instance.

Download the source code and Web application (in wa-ajax-Library.war) for this
tutorial.

Section 2. Introduction to AJAX

AJAX basics

AJAX enables a dynamic, asynchronous Web experience without the need for page
refreshes. It incorporates the following technologies:

• XHTML and CSS provide a standards-based presentation.

• Document Object Model (DOM) provides dynamic display and interaction.

• XML and XSLT provide data interchange and manipulation.

• XMLHttpRequest provides asynchronous data retrieval.

• JavaScript binds everything together.

The core of AJAX technology is a JavaScript object: XMLHttpRequest. This object
is supplied through browser implementations -- first through Internet Explorer 5.0
and then through Mozilla-compatible browsers. Take a closer at this object.

XMLHttpRequest

With XMLHttpRequest, you can use JavaScript to make a request to the server
and process the response without blocking the user. As you create your Web site
and use XMLHttpRequest to perform screen updates on the client's browser
without the need for refresh, it provides much flexibility and a rich user experience.

Examples of XMLHttpRequest applications include Google's Gmail service,
Google's Suggest dynamic lookup interface, and the MapQuest dynamic map

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 2 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://jakarta.apache.org/site/downloads/downloads_tomcat-5.cgi
http://www.ibm.com/legal/copytrade.shtml

interface. In the next sections, we demonstrate how to use XMLHttpRequest object
in detail as we demonstrate the design of a book order application and implement it.

Section 3. Application design

Elements of the application

The sample Web-based book order application will contain the following client-side
functions implemented in AJAX:

• Subscription ID validation

• A View Authors list

• A View Publishers list

The objective here is to show how real time validation and page refreshes in a Web
page make user interaction smoother and more efficient.

Structure of the application

The diagram in Figure 1 depicts the design architecture of the sample book order
application:

Figure 1. The AJAX architecture
The application will be a single Web page developed with JavaServer Pages (JSP)
technology. The user will be able to invoke the Web page using a Web browser
(such as Microsoft® Internet Explorer) and enter the Subscription ID which the
application validates in real time. As the ID is validated asynchronously, the user can
input more information. The user can view the book titles either by Author or
Publisher. The screen will populate the Authors or Publishers list based on user
choice. Based on the selection, the Titles list is populated. All these lists will
populate in real time -- in other words, the page is not refreshed, but still the data
comes from the backend tier. We call this phenomenon real time refreshes.

As you can see in Figure 1, the XMLHttpRequest JavaScript object helps with the
real time asynchronous processing. This object makes a request in the form of XML
over HTTP to the LibraryServlet servlet residing in a Web container. The servlet
then queries the database, fetches the data, and sends it back to the client, again in
the form of XML over HTTP. The requests and responses occur in real time without

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 3 of 14

http://www.ibm.com/legal/copytrade.shtml

refreshing the page.

This is what makes AJAX so powerful. The user does not wait for page reload to
complete because there is no page reload.

In the next section, we'll demonstrate how to implement the book order application
based on this design. We will take you through the code and perform some analysis.
(To get the sample code for this tutorial, download the file, x-ajax-library.war.)

Section 4. Implementing the application

Application implementation with AJAX

In this section, we do a code walkthrough of the sample book order application and
take a close look at each AJAX-based, Javascript component:

• Validate Subscription ID

• View Authors

• View Publishers

• View Titles

Code walkthrough: Validate the subscription ID

Let's start with the function Validate Subscription ID <input type="text"
name="subscriptionID" onblur="validate(this.form)"/>. This code
creates a text field where users can enter Subscription IDs. Once the user enters the
ID and moves to the next field in the form, the onBlur event fires. This event calls a
JavaScript function validate():

var req;
function validate(formObj) {

init();
req.onreadystatechange = subscriptionValidator;
req.send("subscriptionID=" + formObj.subscriptionID.value);

}

The validate() function takes formObj as a parameter. It first calls the init()
function:

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 4 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

function init() {
if (window.XMLHttpRequest) {

req = new XMLHttpRequest();
} else if (window.ActiveXObject) {

req = new ActiveXObject("Microsoft.XMLHTTP");
}
var url = "/Library/LibraryServlet";
req.open("POST", url, true);
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

}

Code walkthrough: init()

Now look at the init() function does (we divide the code in parts):

if (window.XMLHttpRequest) {
req = new XMLHttpRequest();

} else if (window.ActiveXObject) {
req = new ActiveXObject("Microsoft.XMLHTTP");

}

The init() function first creates the XMLHttpRequest object. This request object
is the core of AJAX. It sends and receives the request in XML form. This piece of
code checks for browser support for the XMLHttpRequest object (most browsers
support it). If you are using Microsoft Internet Explorer 5.0 or above, then the second
condition is executed.

req.open("POST", url, true);
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Once your code creates the XMLHttpRequest object, you need to set certain
request properties. In the preceding code, the first line sets the request method,
request URL, and the type of request (whether it is asynchronous or not). It does so
by calling the open() method on the XMLHttpRequest object.

Here we will use the POST method. Ideally, use POST when you need to change the
state on the server. Our application is not going to change the state, but we still
prefer to use POST. The url is the URL of the servlet to be executed. true
indicates that we will process the request asynchronously.

For the POST method, we need to set the request header Content-Type. This is
not required for the GET method.

function validate(formObj) {
init();
req.onreadystatechange = subscriptionValidator;
req.send("subscriptionID=" + formObj.subscriptionID.value);

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 5 of 14

http://www.ibm.com/legal/copytrade.shtml

}

Code walkthrough: Callback handler 1

To continue with the validation method, next you assign the
subscriptionValidator callback handler to onreadystatechange which will
fire at every state change on the request.

What is this callback handler all about? Since you are processing the request
asynchronously, you need a callback handler which is invoked when the complete
response is returned from the server -- the callback handler is where you will
validate the subscription ID (that is, write your actual validation code).

The handler acts as a listener. It waits until the response is complete. (More on the
handler code later.) To send the request, the last line calls the send() method. The
request is sent as a name=value pair. For the GET method, the request is sent as
part of the URL, so the send() method is passed a null parameter.

The request is sent to the servlet. The servlet processes the request and sends back
the response in real time. This is how the servlet processes the request. The next
code snippet illustrates the LibraryServlet -- doPost() method.

public void doPost(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {

String ID = null;
ID = req.getParameter("subscriptionID");
if (ID != null) {

String status = "<message>" + this.validID(ID) + "</message>";
this.writeResponse(resp, status);

}
}

Code walkthrough: Callback handler 2

The doPost() method gets the subscriptionID from the request parameter. To
validate the ID, it calls the validID() method. This method validates the ID and
returns true if the ID is valid, otherwise it returns false. It constructs the return
status in XML format and writes the response by calling the writeResponse()
method. Now examine the writeResponse() method.

public void writeResponse(HttpServletResponse resp, String output) throws IOException {
resp.setContentType("text/xml");
resp.setHeader("Cache-Control", "no-cache");
resp.getWriter().write(output);

}

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 6 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The response is sent in XML format. The first line sets the response content type,
which is text/xml. The next line sets the header Cache-Control with the value
of no-cache. This header is mandatory. AJAX requires that response output is not
cached by the browser. To write the response, the last line calls the
getWriter().write() method.

Code walkthrough: Callback handler 3

The request is processed by the servlet and the response is sent back to the client.
Remember, this all happens in the background without a page refresh. Now the
callback handler method that we discussed earlier, will handle and parse the
response:

function subscriptionValidator() {
if (req.readystate == 4) {

if (req.status == 200) {
var messageObj = req.responseXML.getElementsByTagName("message")[0];
var message = messageObj.childNodes[0].nodeValue;
if (message == "true") {

msg.innerHTML = "Subscription is valid";
document.forms[0].order.disabled = false;

} else {
msg.innerHTML = "Subscription not valid";
document.forms[0].order.disabled = true;

}
}

}
}

Code walkthrough: Revisiting XMLHttpRequest

As mentioned earlier, the XMLHttpRequest object is the core object which
constructs and sends the request. It also reads and parses the response coming
back from the server. Look at the code in parts.

if (req.readystate == 4) {
if (req.status == 200) {

The preceding code checks the state of the request. If the request is in a ready
state, it will then read and parse the response.

What do we mean by ready state? When the request object attribute readystate
has the value of 4, it means that the client received the response and is complete.
Next we check the request status (whether the response was a normal page or an
error page). To ensure that the response is normal, check for the status value of
200. If the status value is 200, then it will process the response.

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 7 of 14

http://www.ibm.com/legal/copytrade.shtml

var messageObj = req.responseXML.getElementsByTagName("message")[0];
var message = messageObj.childNodes[0].nodeValue;
if (message == "true") {

msg.innerHTML = "Subscription is valid";
document.forms[0].order.disabled = false;

} else {
msg.innerHTML = "Subscription not valid";
document.forms[0].order.disabled = true;

} }

Next, the request object reads the response by calling responseXML property. Note
the servlet sent back the response in XML so we use responseXML. If the response
sent was in text, then you can use the responseText property.

In this example, we deal with XML. The servlet constructed the response in a
<message> tag. To parse this XML tag, call the getElementsByTagName()
method on the responseXML property of the XMLHttpRequest object. It gets the
tag name and the child value of the tag. Based on the value parsed, the response is
formatted and written in HTML.

You just finished validating the subscription ID, all without a page refresh.

Code walkthrough: View authors, publishers, titles

The other functionalities -- View Authors, View Publishers, and View Titles -- work
along similar lines. You have to define separate handlers for each functionality:

function displayList(field) {
init();
titles.innerHTML = " ";
req.onreadystatechange = listHandler;
req.send("select=" + escape(field));

}

function displayTitles(formObj) {
init();
var index = formObj.list.selectedIndex;
var val = formObj.list.options[index].value;
req.onreadystatechange = titlesHandler;
req.send("list=" + val);

}

Remember, this sample application allows the user to view the titles by author or
publisher. So either the Author list or the Publisher list displays. In such a scenario,
the application only calls one callback handler based on the user selection -- in other
words, for author and publisher list, you have only one listHandler callback
handler.

To display the titles list, you will use titlesHandler. The remaining functionality
stays the same with the servlet processing the request and writing back the

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 8 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

response in XML fornat. The response is then read, parsed, formatted, and written in
HTML. You can render the list in HTML as a select......options tag. This
sample code snippet shows the titlesHandler method.

var temp = "<select name=\"titles\" multiple\>";
for (var i=0; i<index; i++) {

var listObj = req.responseXML.getElementsByTagName("list")[i];
temp = temp + "<option value=" + i +">" + listObj.childNodes[0].nodeValue

+ "</option>";
}
temp = temp + "</select>";
titles.innerHTML = temp;

So far, we've demonstrated how to implement real time validation and refreshes.
WIth AJAX, you can choose among several ways to add spice and flair to user
interactions on your Web sites. Next we'll run the application.

Section 5. Running and testing the application

Run the application

Download the sample code wa-ajax-Library.war and copy it to your Tomcat Webapp
directory (for example, c:\Tomcat 5.0\Webapps). To start the Tomcat server, type
the following:

cd bin
C:\Tomcat 5.0\bin> catalina.bat start

Tomcat is now started with your AJAX Web application deployed.

Test the application

To test the application:

1. Open your Web browser. Point to
http://localhost:tomcatport/Library/order.jsp where the
variable tompcatport is the port that your Tomcat server runs on.
You will see the subscription screen.

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 9 of 14

http://www.ibm.com/legal/copytrade.shtml

2. In the Enter Subscription ID field, type any user ID except "John" and
tab out of the field.
The subscription ID request that you made to the server asynchronously
will be validated. You will see a message "Subscription not valid" as
shown in Figure 2:

Figure 2. The "Subcription not valid" screen
The application validated the user asynchronously and provided runtime
validation without refreshing the browser.

3. Type in the user ID value, John.
You will see a message "Subscription is valid". Once the subscription is
valid, the application enables Order button.

4. Select the By Author or By Publisher radio button to populate the author
or publisher drop-down list, respectively.

5. Select an author or publisher from the drop-down list.
The title area is populated dynamically (as in Figure 3).

Figure 3. The "Subcription is valid" screen
When you select the author or publisher, the application requests the
server to provide the title information associated with the selected author
or publisher at runtime from the server. The title information displays
without refreshing the browser.

You've successfully installed and tested this sample AJAX Application.

Section 6. Summary

In conclusion

AJAX has come a long way since its inception. We believe AJAX can be applied as
more than just a design pattern, though AJAX still has some issues:

• Browser support for the XMLHttpRequest object can be constraining.
Most browsers do support the XMLHttpRequest object, but a few do not

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 10 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

(usually the older version of browsers).

• AJAX is best suited for displaying a small set of data. If you deal with
large volumes of data for a real time display of lists, then AJAX might not
be the right solution.

• AJAX is quite dependent on JavaScript. If a browser doesn't support
JavaScript or if a user disables the scripting option, then you cannot
leverage AJAX at all.

• The asynchronous nature of AJAX will not guarantee synchronous
request processing for multiple requests. If you need to prioritize your
validation or refreshes, then design your application accordingly.

Even with these potential hiccups, AJAX still stands as the best solution to enhance
your Web pages and resolve page-reload issues.

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 11 of 14

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download
method

Web application Web archives wa-ajax-Library.war 8KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 12 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://public.dhe.ibm.com/software/dw/web/wa-ajax/Library.war
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Ajax for Java developers: Build dynamic Java applications (developerWorks,
September 2005): This article introduces a groundbreaking approach to
creating dynamic Web application experiences that solve the page-reload
dilemma.

• XML Matters: Beyond the DOM (developerWorks, May 2005): Get details on the
Document Object Model (DOM) as a method to build dynamic Web
applications.

• Using Ajax with PHP and Sajax (developerWorks, October 2005): Take this
tutorial if you are interested in developing rich Web applications that
dynamically update content using AJAX and PHP.

• AJAX and scripting Web services with E4X (developerWorks, April 2005): In this
series, you find details about AJAX and ECMAScript for XML.

• Ajax for Java developers: Java object serialization for Ajax (developerWorks,
October 2005): Learn five ways to serialize data in AJAX applications.

• Build quick, slick Web sites (developerWorks, September 2005): Add XHTML to
your Web designs for fast-loading, responsive Web pages.

• The developerWorks Web Architecture zone: Find articles, tutorials, and more
about various Web-based solutions.

• Survey AJAX/JavaScript libraries: Visit the OSA Foundation's wiki.

• XUL Planet's object reference section: Get the details on XMLHttpRequest (plus
all kinds of other XML objects, as well as DOM, CSS, HTML, Web Service, and
Windows and Navigation objects.

Discuss

• Participate in the discussion forum for this content.

• Ajax.NET Professional: Discuss all things AJAX on a great blog.

• developerWorks blogs: Get involved in the developerWorks community..

About the authors

Naveen Balani
Naveen Balani spends most of his time designing and developing J2EE-based
frameworks and products. He has written various articles for IBM developerWorks in
the past, covering such topics as SOA, JMS, Web services architectures, CICS,

ibm.com/developerWorks developerWorks®

Build apps using Asynchronous JavaScript with XML (AJAX)
© Copyright IBM Corporation 2005. All rights reserved. Page 13 of 14

http://www.ibm.com/developerworks/java/library/j-ajax1/
http://www.ibm.com/developerworks/xml/library/x-matters41.html
http://www.ibm.com/developerworks/edu/os-dw-os-phpajax-i.html
http://www.ibm.com/developerworks/webservices/library/ws-ajax1/
http://www.ibm.com/developerworks/java/library/j-ajax2/
http://www.ibm.com/developerworks/web/library/wa-slicksite/
http://www.ibm.com/developerworks/web/
http://wiki.osafoundation.org/bin/view/Projects/AjaxLibraries
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://www.ibm.com/developerworks/community/
http://weblogs.asp.net/mschwarz/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

AXIS, J2ME, DB2, XML Extender, WebSphere Studio, MQSeries, Java Wireless
Devices and DB2 Everyplace for Palm, J2ME, Java-Nokia, Visual Studio .Net, and
wireless data synchronization.

Rajeev Hathi
Rajeev Hathi currently works as a Senior Systems Analyst for Satyam Computers
Ltd. He spends his time designing and developing J2EE-based frameworks. He likes
exploring new technologies and new fields of domains. His pastime hobbies are
sports and music.

developerWorks® ibm.com/developerWorks

Build apps using Asynchronous JavaScript with XML (AJAX)
Page 14 of 14 © Copyright IBM Corporation 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	Introduction to AJAX
	AJAX basics
	XMLHttpRequest

	Application design
	Elements of the application
	Structure of the application

	Implementing the application
	Application implementation with AJAX
	Code walkthrough: Validate the subscription ID
	Code walkthrough: init()
	Code walkthrough: Callback handler 1
	Code walkthrough: Callback handler 2
	Code walkthrough: Callback handler 3
	Code walkthrough: Revisiting XMLHttpRequest
	Code walkthrough: View authors, publishers, titles

	Running and testing the application
	Run the application
	Test the application

	Summary
	In conclusion

	Downloads
	Resources
	About the authors

