
© Copyright IBM Corporation 2010 Trademarks
Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 1 of 26

Dynamically select adapters based on context using
WebSphere Business Services Fabric
Anket Jain (ankejain@in.ibm.com)
System Software Engineer
EMC

Vinay Roy Thykkuttathil (vinayroyt@in.ibm.com)
Staff Software Engineer
WSO2 Inc

Naveen Balani (banaveen@in.ibm.com)
Software Architect
WSO2 Inc

05 May 2010

Learn how to dynamically invoke resource adapters using WebSphere® Business Services
Fabric’s policy framework.

Prerequisites
Before you get started, make sure you have the following software installed so that you can
configure and deploy the module in this article:

• WebSphere Integration Developer V6.2 (hereafter called Integration Developer)
• WebSphere Process Server V6.2 (hereafter called Process Server)
• WebSphere Business Services Fabric V6.2 (hereafter called Fabric)

In addition, this article assumes that you're familiar with Fabric.

Scenario overview
Company XYZ recently acquired Company ABC to expand its printing business. Company
XYZ uses a DB2 Enterprise Information System (EIS) to store and retrieve customer data, but
Company ABC uses a file-based data storage mechanism. The processes of the two companies
need to be integrated into one system that uses both of the existing data storage mechanisms
(DB2 EIS and file system).

The integrated solution design needs to be adaptable and able to retrieve or update information in
the appropriate EIS, based on user log-in.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:ankejain@in.ibm.com
mailto:vinayroyt@in.ibm.com
mailto:banaveen@in.ibm.com

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 2 of 26

In addition, company XYZ is planning integration with other third-party vendors for printing
services, in which customer data would be sourced from third-party systems. In short, the
company is looking for a solution that allows generalized access to multiple systems and that
enables adding new backend systems or third-party vendors incrementally without requiring
changing its business processes.

For the sake of simplicity, we won’t address the overall business solution in this article, but will
deal only with retrieving the appropriate customer information based on user context. We'll use
WebSphere Adapters to integrate the databases, and Fabric to select the appropriate adapter
implementation based on user context.

Following are the steps required to achieve the integration:

1. Create a Service Component Architecture (SCA module) based on the WebSphere Adapter
for Flat Files.

2. Create an SCA module based on the WebSphere Adapter for JDBC (Java™ Database
Connectivity).

3. Create a generic interface to abstract calls to the adapter implementations for Flat File and
JDBC.

4. Test the Adapter for Flat File and Adapter for JDBC SCA implementations.
5. Use the Fabric policy framework to select the correct adapter implementation based on the

user context.
6. Test the integrated solution.
7. Manage changes.

Create an SCA module based on Adapter for Flat File

Using Integration Developer, you can easily create and expose SCA modules for external
consumption by completing the following steps:

1. Open a fresh workspace in Integration Developer.
2. Select New => Module.
3. Specify BusinessServices as the module name and click Finish, as shown in Figure 1.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 3 of 26

Figure 1. Create a new module in Integration Developer

4. Follow the instructions in the IBM WebSphere Adapter for Flat Files 6.2 Quick Start Tutorials
(Tutorial 1) to create an outbound module to retrieve structured content from a filesystem-
based database. Once you've complete the outbound module, the assembly diagram should
look like Figure 2.

http://publib.boulder.ibm.com/bpcsamp/v6r2/externalconnections/flatfilesAdapterv62/download/IBM%20WebSphere%20Adapter%20for%20FlatFiles%206.2.0.0%20Quick%20Start%20Tutorials.pdf

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 4 of 26

Figure 2. SCA module based on Adapter for Flat File

Create an SCA module based on Adapter for JDBC

To create a JDBC module do the following:

1. Open Integration Developer in a fresh workspace.
2. Select New => Module.
3. Specify BusinessServices as the module name and click Finish, as shown in Figure 1.
4. Follow the instructions in the IBM WebSphere Adapter for JDBC 6.2 Quick Start Tutorials

(Tutorial 13) to create an outbound module create an outbound module to manipulate
database table rows. Once you've completed the outbound module, the assembly diagram
should look like Figure 3. Follow the instructions listed in the Quick Start Scenario (QSS)
for the WebSphere Adapter for JDBC mentioned in the references section and create an
outbound module to manipulate database table rows. Select WebSphere Adapter for JDBC,
as shown in Figure 3.

http://publib.boulder.ibm.com/bpcsamp/v6r2/externalconnections/jdbcAdapterv62/download/IBM%20WebSphere%20Adapter%20for%20JDBC%206.2%20QSS%20R1D1.pdf

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 5 of 26

Figure 3. Select WebSphere Adapter for JDBC

5. Once you complete the outbound module, the assembly diagram should look like Figure 4.

Figure 4. New Flat File and JDBC SCA modules

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 6 of 26

Create a generic interface to abstract calls to the adapter
implementations for Flat File and JDBC

Now that you’ve created the required SCA modules, you need to expose these using a generic
interface. To do this, you need to create an interface with generic input data types to make the
outbound requests.

Create the GenericRequest and GenericResponse data objects

To create the GenericRequest and GenericResponse data objects, do the following:

1. Right-click on Data Types and select New => Business Object, as shown in Figure 5.

Figure 5. Create a new business object

2. In the New Business Object dialog, specify GenericRequest as the Name and keep the default
values for everything else, as shown in Figure 6.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 7 of 26

Figure 6. Create GenericRequest business object

3. Create two attributes of string type customerType and customerID where:
• customerType can either be NEW or EXISTING. If the customer type is NEW, details are

stored in a database table. If the customer type is EXISTING, the details are stored in a
filesystem-based database.

• customerID is a unique field that is used to retrieve the customer details.

After the attributes are added, the GenericRequest business object should look like Figure 7.

Figure 7. GenericRequest business object

Based on the value of the CustomerType field in the GenericRequest Business Object, you can
make a decision about which adapter interface to invoke.

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 8 of 26

4. Now create a GenericResponse business object to be returned back to the caller, as shown in
Figure 8.
Figure 8. Create GenericResponse business object

The GenericResponse business object must contain the Customer Name and Customer
Address information retrieved from the appropriate store (JDBC table or Flat File database).
The final business object structure will look like Figure 9.
Figure 9. GenericResponse business object

The Adapter for Flat Files will be used to retrieve customer details stored in a flat file database
with structured content, as shown in Listing 1. The CustomerID field is used to look up the
details of the customer.

Listing 1. Flat File Structured Content
 <?xml version="1.0" encoding="UTF-8"?>
<p:Customer xsi:type="p:Customer"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://BusinessServices">
 <customerID>1</customerID>
 <customerName>NDI-1</customerName>

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 9 of 26

 <customerAddress>France</customerAddress>
</p:Customer>
##
<?xml version="1.0" encoding="UTF-8"?>
<p:Customer xsi:type="p:Customer"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://BusinessServices">
 <customerID>2</customerID>
 <customerName>NDI-2</customerName>
 <customerAddress>France</customerAddress>
</p:Customer>
##
<?xml version="1.0" encoding="UTF-8"?>
<p:Customer xsi:type="p:Customer"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://BusinessServices">
 <customerID>3</customerID>
 <customerName>NDI-3</customerName>
 <customerAddress>France</customerAddress>
</p:Customer>
##

The Adapter for JDBC will be used to retrieve customer details from a pre-populated database
table, as shown in Figure 10.

Figure 10. Customer record for JDBC

Create POJO components to invoke the adapter modules
Now you need to create POJO components to invoke the outbound Flat File and JDBC adapter
modules you've created. To do this, complete the following steps:

1. Click Java in the Components folder and drag it onto the palette. Repeat this operation
and wire one Java component to the FlatFileImport component and the other to the
JDBCOutboundInterface component. Your assembly diagram should look like Figure 11.
Figure 11. POJO components wired to the imports

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 10 of 26

2. For easier invocation of the adapter components, create a generic interface by right-clicking
Interface and selecting New => Interface, as shown in Figure 12.

Figure 12. Create a generic interface

3. Specify AdapterInvoker as the name of the interface and add a two-way method called
invokeAdapter.

4. Add GenericRequest and GenericResponse as the input and output types of the invokeAdapter
method, as shown in Figure 13.

Figure 13. AdapterInvoker interface

5. Add the newly created AdapterInvoker interface to both the Java components
(FlatFileInvoker and JDBCInvoker) by right-clicking on the respective Java components and
selecting Add => Interface. You'll see the Add Interface dialog, as shown in Figure 14.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 11 of 26

Figure 14. Add AdapterInvoker interface

6. After adding the newly created interface, you need to implement the two Java components.
Double-click on the specific Java component to implement it.
The default implementation for the invokeAdapter method of the POJO components should
look like Listing 2.

Listing 2. Default implementation for the invokeAdapter method
 public DataObject invokeAdapter (DataObject request) {

return null;

}

7. Change the default implementation for the invokeAdapter method in the FlatFile component
to the content shown in Listings 3 and 4.

Listing 3.Implementation for the invokeAdapter method for the FlatFile
component: invoking the FlatFile outbound interface.
 public DataObject invokeAdapter(DataObject request) {
 String customerID = request.getString("customerID");

 Service ffService = locateService_FlatFileImportPartner();
 ServiceManager serviceManager = new ServiceManager();
 BOFactory bof = (BOFactory)
serviceManager.locateService("com/ibm/websphere/bo/BOFactory");

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 12 of 26

 DataObject flatFile =
bof.create("http://www.ibm.com/xmlns/prod/websphere/j2ca/flatfile/flatfile",
"FlatFile");
 DataObject genericResponse =
bof.create("http://BusinessServices", "GenericResponse");

 flatFile.setString("fileName", "FF.xml");
 flatFile.setString("directoryPath", "C:\\FF\\out");
 flatFile.setString("splitFunctionClassName", "com.ibm.j2ca.utils.
filesplit.SplitByDelimiter");
 flatFile.setString("splitCriteria", "##;\r\n");

 DataObject response = (DataObject)
ffService.invoke("retrieveFlatFile", flatFile);

Listing 4. Implementation for the invokeAdapter method for the FlatFile
component: parsing the response
Iterator customers = ((List)
response.getDataObject("retrieveFlatFileOutput").getDataObject
("CustomerRetrieveWrapper").getList("Content")).iterator();

 while(customers.hasNext()) {
 DataObject customer = (DataObject) customers.next();

 if(customer.getString("customerID").compareToIgnoreCase(customerID)
== 0) {
 genericResponse.setString("customerName",
customer.getString("customerName"));
 genericResponse.setString("customerAddress",
customer.getString("customerAddress"));
 }
 }

 return genericResponse;
 }

8. Change the default implementation for the invokeAdapter method in the JDBC component to
the content shown in Listings 5 and 6.

Listing 5. Implementation for the invokeAdapter methods for the JDBC
component: invoking the JDBC outbound interface
public DataObject invokeAdapter(DataObject request) {
 Service jdbcService =
 locateService_JDBCOutboundInterfacePartner();
 ServiceManager serviceManager = new ServiceManager();
 BOFactory bof = (BOFactory) serviceManager.
 locateService("com/ibm/websphere/bo/BOFactory");
 DataObject ankejainCustomerBG = bof.create("http://" +
 "www.ibm.com/xmlns/prod/websphere/j2ca/jdbc/" +
 "ankejaincustomerbg", "AnkejainCustomerBG");
 DataObject ankejainCustomer = bof.create("http://www" +
 ".ibm.com/xmlns/prod/websphere/j2ca/jdbc/" +
 "ankejaincustomer",
 "AnkejainCustomer");
 DataObject genericResponse = bof.create("http://" +
 "BusinessServices",
 "GenericResponse");

 ankejainCustomer.setString("custid", request.getString

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 13 of 26

 ("customerID"));
 ankejainCustomerBG.setDataObject("AnkejainCustomer",
 ankejainCustomer);

 DataObject response = (DataObject) jdbcService.invoke
 ("retrieveAnkejainCustomerBG", ankejainCustomerBG);

Listing 6. Implementation for the invokeAdapter methods for the JDBC
component: parsing the response to retrieve the customer name and address
genericResponse.setString("customerName", response.
 getDataObject("retrieveAnkejain" +
 "CustomerBGOutput")
 .getDataObject("AnkejainCustomer")
 .getString("name"));
 genericResponse.setString("customerAddress",
 response
 .getDataObject("retrieveAnkejain" +
 "CustomerBGOutput")
 .getDataObject("AnkejainCustomer")
 .getString("address"));

 return genericResponse;
 }

Test the Flat File and JDBC adapter SCA module implementations
To test the implementations, complete the following steps:

1. After generating the assembly diagram and implementing the components, save the module
and deploy it to your WebSphere Process Server instance.

2. After successful deployment, invoke the test client for the BusinessServices module.
3. To invoke the Flat File module, select the FlatFileInvoker component and specify a value for

the customerID field, as shown in Figure 15.

Figure 15. Test FlatFileInvoker component

4. Click Execute to run the test client. You'll see that the customer details are retrieved, as
shown in Figure 16.

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 14 of 26

Figure 16. FlatFileInvoker response

5. To invoke the JDBC module, select the JDBCInvoker component and specify a value for the
customerID field, as shown in Figure 17.

Figure 17. Test JDBCInvoker component

6. Click Execute to run the test client. The customer details are retrieved from the database
table, as shown in Figure 18.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 15 of 26

Figure 18. JDBCInvoker response

Use the Fabric policy framework to select the appropriate adapter
based on the user context

Now that you've created the generic interface and implemented the corresponding flat file and
JDBC components, you now need to configure Fabric’s policy framework to select the appropriate
adapter implementation based on the customer type.

Customer type is one of the points of variability for the customer service that drives selection of
a particular type of service implementation. This point of variability is modeled as an ontology
extension (prior to Fabric V6.2) or vocabularies (Fabric V6.2 or later) in Fabric, which provides the
required context for the service that is later used by business services and policies.

Vocabulary concepts can be created with the Fabric authoring template using Business Space,
which provides a Web-based user interface to create concepts. The concepts define the terms
used by business services and policies.

For this solution, we'll assume that the ontology extensions and Business Services project are
already created and available.

For detailed instructions on how to create ontology extensions and a Business Services project,
refer to the article series Creating flexible service-oriented business solutions with WebSphere
Business Services Fabric.

To import the ontology extensions and Business Services project for the Customer Application
project, complete the following steps:

1. Log on to Fabric administration console.
2. Select Governance Manager => Import/Export.
3. On the Import dialog, select the CustomerOntologyModel.zip file provided for download

with this article, and click Import File. This imports the Customer Ontology model ontology
extensions, which include the CustomerTypeAssertion.

http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Creating+flexible+service-oriented+business+solutions+with+WebSphere+Business+Services+Fabric,+Part
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Creating+flexible+service-oriented+business+solutions+with+WebSphere+Business+Services+Fabric,+Part

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 16 of 26

4. Next, import the CustomerApplicationProject.zip provided for download. This is the Fabric
Business Services project that contains the business service metadata for the customer
solution.

5. Replicate the Customer Application project in Composition Studio and analyze the business
service metadata, as described in the next section.

Analyze the Business Services project

Complete the following steps to replicate the Customer Application Business Service project into
Composition Studio:

1. In Integration Developer, switch to the Business Service perspective.
2. Select Window => Open Perspective => Other, and select Business Service.
3. Select File => New => Project => Business Services Fabric => Fabric Project, then click

Next.
4. Specify the project name as CustomerApplicationProject and click Next.
5. Click Configure, and specify the Business Service repository connection information, as

follows:
• Hostname:localhost. The host where Fabric is deployed.
• Port:: portnumber. The port on which the Fabric UTE server is running (for example,

9081).
• Username:admin
• Password:admin

6. Click OK.
7. Click Next, and select Customer Application Project, then click Finish.

This new Fabric project will hold the composite service and associated interfaces for the
Customer Application project.

8. Add the Dynamic Assembler component to the existing SCA module and then create the
business service metadata for the Customer Application project from the SCA module.

Wire the Fabric Dynamic Assembler to the SCA module

So far, you've created and tested the Customer Flat file and JDBC exports, but you haven't
yet added any dynamic binding support. Fabric doesn't know which set of services to call if the
customer type is NEW or EXISTING. You can use the Fabric Dynamic Assembler to provide this
dynamic binding support.

The Dynamic Assembler is a highly scalable engine that enables dynamic policy assembly and
service selection based on content, context, and contract. It enables business agility through
policy-driven run-time assembly of business services. The Dynamic Assembler links service
consumers to service providers. Think of it as a smart proxy that determines which endpoints
to use based on requests. Rather than invoking your endpoint directly, consuming applications
invoke Fabric proxy URIs. The Dynamic Assembler then redirects the requester to the appropriate
endpoint.

To assemble the components, do the following:

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 17 of 26

1. Open the assembly diagram editor for the module.
2. Add a Dynamic Assembler component for the AdapterInvoker service by dragging it onto

the editor. Label it CustomerDetailsDA.
3. Right-click the Dynamic Assembler component and select Add => Interface, then select

AdapterInvoker.
4. Double-click the Dynamic Assembler component to implement it.
5. Specify the folder where you want to generate the implementation file.
6. In the dynamic assembly editor, check Enable Verbose Logging.
7. Right-click CustomerDetailsDA and select Generate Export => SCA Binding (or Web

Service Binding).

The Dynamic Assembler needs to extract information from the Context in order to select the
appropriate endpoints. However, the Dynamic Assembler cannot directly act on the body of the
request, it can only use the data in the Context. The Dynamic Assembler provides a set of plug-
ins that are invoked at certain defined times in the life cycle of the request-response pair. One of
these plug-ins is the ContextExtractor. This plug-in is invoked early in the life cycle of a Dynamic
Assembler request. Its job is to look through the body of a request message and insert (or update)
data items in the Context based on what it finds. In order to use the ContextExtractor, you need to
add the Dynamic Assembler plug-ins to the build path of the project by doing the following:

1. Right-click the project, and select Properties => Java build path.
2. On the Libraries tab, select the WebSphere Process Server v6.2 server run-time library,

and click Remove.
3. Select Server Runtime, then click Next.
4. Select WebSphere Business Services Fabric Server v6.2 from the list of run-time libraries.
5. Select a Java component from the palette and drag it onto the assembly editor so that you

can add an interface to the component. Rename it to CustomerContextExtractor.
6. Wire the CustomerContextExtractor component to the CustomerDetailsDA component.
7. Right-click the CustomerContextExtractor component and select Add => Interface, then

select ContextExtractor.
8. Double-click on the Java component to generate skeleton Java code that implements

the ContextExtractor interface you added. Add the code shown in Listing 7 in the
extractContext() method . As you see, we've added CUSTOMER_TYPE_ASSERTION (the required
context) to the Fabric context. CUSTOMER_TYPE_ASSERTION is the ontology extension that you
imported earlier in CustomerOntologyModel.zip.

Listing 7. Implementation of extractContext() method
public Context extractContext(PendingRequest arg0)
 throws UnexpectedContentException {
 //TODO Needs to be implemented.
 /**
 * URI for state based assertion.
 */

 Context context = arg0.getContext();

 DataObject body = arg0.getMessageBody();
 DataObject request =
((DataObject)body.getSequence(0).getValue(0));

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 18 of 26

 //Print out the content of data object via SdoUtil provided
by Fabric
 System.out.println("request"+SdoUtil.printTree(request));

 DataObject genericRequest = (DataObject)
request.getSequence(0).getValue(0);

 System.out.println("genericRequest"+SdoUtil.printTree(genericRequest));

 //Retrieve customerType
 String input = (String) genericRequest.getString("customerType");

 System.out.println("Input received in extractContext is"
+ input);

 System.out.println("Context received is " + context);

 TypedValue assertionValue = new TypedValue(input);
 context.setSelectionProperty(CUSTOMER_TYPE_ASSERTION,
assertionValue);

 return context;

 }

For more information about extending the Dynamic Assembler using plug-ins like ContextInjector
and ContextExtractor, refer to the Websphere Business Services Fabric Version 6.2 Information
Center.

9. Publish the updated SCA module to the WebSphere Business Services Fabric unit test
server.

The completed assembly diagram should look like Figure 19.

Figure 19. Complete assembly diagram

Create the Business Service metadata for the CustomerApplication project
In this section, you'll create the composite service definition and policies for the Customer
Application project.

1. Switch to the Business Services perspective. Right-click on the CustomerApplication
Business Service project and select New => Composite Service.

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.ws.fabric.icmaster.doc/fabric_welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.ws.fabric.icmaster.doc/fabric_welcome.html

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 19 of 26

2. Specify BusinessService as the SCA Project and click Finish. The wizard creates metadata
definitions for the composite service , atomic services and endpoints invoked by the
composite service, as shown in Figure 20.

Figure 20. Composite service definition

3. Add the points of variability supported by the endpoints. The points of variability
were modeled as ontology extensions and imported in Fabric by importing the
CustomerOntologyModel.zip. Double-click the CustomerDetailsFlatFileImplExport
endpoint, then click on the Assertions tab and click Add.

4. In the Assertion Type dialog, select Customer Type Assertion and click OK, as shown in
Figure 21.

Figure 21. Select Customer Type Assertion

5. In the Customer Type Assertion dialog, check Required for Assertion Options and
EXISTING for Customer Type, then click OK, as shown in Figure 22.

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 20 of 26

Figure 22. Select assertion options and customer type

6. In the same way, specify the Customer Type value asNEW for the
CustomerDetailsJDBCImplExport endpoint.

7. So far, you've assigned some capabilities to service endpoints. Next you need to defined
policies to enable service endpoints to be selected based on the points of variability. A policy
is nothing but a rule in the form if{condition} then {expression}. You want to define a policy
such that, depending upon the customer type , the appropriate adapter implementation
endpoint is invoked. To define a policy to accomplish this, do the following:

1. Right-click Policy and select New => Policy.
2. Specify CustomerTypePolicy as the name and click Browse.
3. Click Browse next to Target, and select Interface and AdpaterInvoker, as shown in

Figure 23, then click Finish.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 21 of 26

Figure 23. Select AdapterInvoker interface

4. After you've created the policy, select the Policy Expression tab,and click Add. In
the Select Assertion Type dialog, select Interopability Assertion => Content Based
Assertion => Customer Type, and click OK.

5. In theCustomer Type Assertion dialog, check Required and Fill from Context, then
click OK, as shown in Figure 24. If Fill from Context is checked and a value is supplied
for an assertion property, that value is used as as the default if the property does not
appear in the context.

Figure 24. Select assertion options

8. You can similuate the policy prior to deployment to ensure that the right service
implementations are being picked up based on the context. To create a policy simulation,
follow these steps:

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 22 of 26

1. Right-click CustomerApplicationProject and select New => Simulation.
2. Specify a name for the simulation and select the CustomerDetailsDAfrom the list of

Dynamic Assembly components, then click Finish.
3. Click Add Content-Based dimension and select Customer Type Assertion.
4. Click Edit on Customer Type to specify the customer type value as EXISTING, then

click Run. You'll see CustomerDetailsFlatFileImplExport is selected, as shown in
Figure 25.

Figure 25. Simulation operation

Similarly, if you specified the Customer Type value as NEW,
CustomerDetailsJDBCImplExport would be selected.

9. Now that the Business Service metadata is created, you need to submit the changes made
in the workspace to the Business Service registry. Since you're using the Fabric UTE
environment , these changes are automatically approved and published to the repository.

Test the integrated solution
To test the solution, do the following:

1. Switch to the Business Integration perspective and right-click CustomerDetailsDAExport,
then select Test component.

2. Specify the NEW for the Customer Type and 1 for the Customer ID. You'll see that
CustomerDetailsJDBCImplExport is invoked. If you specified EXISTING for the Customer
Type, CustomerDetailsJDBCImplExport would be invoked.

You have now successfully enabled adapter implementations that can be selected dynamically
based on user context.

Manage changes
A major requirement for this solution was the ability to seamlessly add new backend systems
and integrate with third-party systems without changing the overall process. For instance, take
an example where Company XYZ acquires another firm that uses an Oracle-based system for
customer access. Following are the steps that would be required to integrate the Oracle backend
with the existing solution:

1. Create a new Adapter for JDBC component to access the Oracle database. The JDBC Oracle
adapter will implement the generic AdapterInvoker interface.

2. Add or extend the customer context.

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 23 of 26

3. Modify or create Fabric policies to specify the business context to use.
4. Publish the changes.

As you can see, using the Fabric policy-driven approach, you can introduce additional components
without changing the core process.

Similarly, if the company needs to integrate with third-party printing systems that provide customer
details, you would need to do the following:

1. Create a new component (such as a Web service or Java component) to access the third-
party print service systems. The new component will implement the generic AdapterInvoker
interface.

2. Add or extend the customer context, for instance, specify XZYPrint for the Customer Type.
3. Modify or create Fabric policies to specify the business context to use.
4. Publish the changes.

Summary

In this article, you learned how to enable adapter implementations to be invoked dynamically using
Fabric. Using the Fabric policy-driven approach, we provided an integrated solution that enables
additional components to be introduced over time without changing the core process.

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 24 of 26

Downloads

Description Name Size
Project files CustomerApplicationProject.zip 7KB

Project files CustomerOntologyModel.zip 4KB

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=486987&filename=CustomerApplicationProject.zip&method=http&locale=
http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=486987&filename=CustomerOntologyModel.zip&method=http&locale=

ibm.com/developerWorks/ developerWorks®

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 25 of 26

Resources

• Business Process Management Samples & Tutorials Version 7.0: To build modules using
WebSphere Integration Developer V6.2, refer to the Quick Start Scenario tutorials for
WebSphere Adapters.

• Configuring and using adapters: This WebSphere Integration Developer V6.2 describes
the adapters for Enterprise Information Systems (EIS) that can be configured to work with
WebSphere Integration Developer.

• Getting Started with IBM WebSphere Business Services Fabric V6.1: This Redbook provides
a complete overview of Fabric, from an architectural introduction, to an installation guide,
and a step-by-step scenario that describes how to model, assemble, deploy, and manage
composite business applications.

• Creating flexible service-oriented business solutions with WebSphere Business Services
Fabric: This series of articles introduces you to WebSphere Business Services Fabric and
shows you how to use it to build composite business services.

• WebSphere Business Services Fabric Version 6.2 Information Center: Get complete product
information.

• developerWorks BPM zone: Get the latest technical resources on IBM BPM solutions,
including downloads, demos, articles, tutorials, events, webcasts, and more.

http://publib.boulder.ibm.com/bpcsamp/v6r2/index.htmll
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.wbit.620.help.adapter.emd.ui.doc/topics/tcreatecmps.html
http://www.redbooks.ibm.com/abstracts/SG247614.html
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Creating+flexible+service-oriented+business+solutions+with+WebSphere+Business+Services+Fabric,+Part
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Creating+flexible+service-oriented+business+solutions+with+WebSphere+Business+Services+Fabric,+Part
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.ws.fabric.icmaster.doc/fabric_top_welcome.html
http://www.ibm.com/developerworks/websphere/zones/bpm/

developerWorks® ibm.com/developerWorks/

Dynamically select adapters based on context using WebSphere
Business Services Fabric

Page 26 of 26

About the authors

Anket Jain

Anket Jain is a Software Developer at the IBM India Software Lab and is currently
working on development and customer support for file-based resource adapters. He
has four years of experience working with various Java technologies including JCA.

Vinay Roy Thykkuttathil

Vinay Roy Thykkuttathil works on the WebSphere Business Integration team at the
IBM India Software Lab. He works on WebSphere JCA adapters and has more than
two years of experience in the Business Integration domain.

Naveen Balani

Naveen Balani works as a Software Architect on WebSphere Business Services
Fabric. He likes to research on upcoming technologies and is a Master Author with
IBM developerWorks, who has written on topics such as Web services, ESB, JMS,
SOA, architectures, open source frameworks, semantic Web, J2ME, pervasive
computing, Spring, Ajax, and various IBM products. Naveen is also a co-author of
Apache CXF Web Service Getting Started (Packt Publishing, 2009), Beginning Spring
Framework 2 (Wiley, 2007), and multiple IBM Redbooks on WebSphere Business
Services Fabric and BPM V6.2 products.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://cxf.soaweb.co.in
http://www.wiley.com/WileyCDA/WileyTitle/productCd-047010161X.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-047010161X.html
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Prerequisites
	Scenario overview
	Create an SCA module based on Adapter for Flat File
	Create an SCA module based on Adapter for JDBC
	Create a generic interface to abstract calls to the adapter implementations for Flat File and JDBC
	Create the GenericRequest and GenericResponse data objects
	Create POJO components to invoke the adapter modules

	Test the Flat File and JDBC adapter SCA module implementations
	Use the Fabric policy framework to select the appropriate adapter based on the user context
	Analyze the Business Services project
	Wire the Fabric Dynamic Assembler to the SCA module
	Create the Business Service metadata for the CustomerApplication project

	Test the integrated solution
	Manage changes
	Summary
	Downloads
	Resources
	About the authors
	Trademarks

