
Migration Plan

• Organising Projects, Billing and Roles
• Setting up VPC
• Managed and Non managed Services

– Database Migration / No-SQL (MongoDB) Migration
• VM Migration – Standalone and Managed Instances
• API Gateway / Endpoint
• Jobs – Adhoc and Event Based
• Hardening the Production setup – Load Balancer, Certificates, WAF etc
• Logging - Central Logging and Backups
• Monitoring – Setting up alerts on CPU usages etc
• CI/CD Pipeline - Continuous integration and deployment

1

Migration Strategy

Plan & Execute

• Define an AWS Organization to centrally govern your environment
• Create a root organization and sub organizations to manage projects

Best practices
• Create multiple projects (i.e. development, testing, production) and client specific

projects.
• Don’t allocate any resources to the root account
• Get visibility of billing per project and setup alerts for budget controls.
• Use Principle of Least Privilege with IAM (i.e. allocate minimal access to perform tasks)

2

Organising Projects, Billing and Roles

Plan & Execute

• Setup VPC for resource isolation
• Create unique subnets (i.e. CIDR range) for all the projects.

Best practices
• Setup VPC peering for sharing of resources across projects. (CIDR block cannot

conflicts with peer VPC, so follow point 2 above as a best practice)
• Keep all VPC instances in private subnets and front end through a Load Balancer.
• Plan for at least 2 availability zones (and more based on your requirements) for fault

tolerance/scalability.
• Setup network ACLs as firewalls to control inbound and outbound traffic at the subnet

level.

3

Setup VPC

Plan & Execute

• Plan for Database Migration – what versions of managed database (i.e. RDS) is
available.

• Plan for non managed services – (i.e. Choosing MongoDB vs DynamoDB)

Best practices
• Setup up high availability for RDS and periodic database backups.
• Change default DB Parameter Groups group based on your RDS instance (i.e. logging

query > 2 second etc) . This requires a DB restart.
• Setup monitoring alerts on DB (i.e. maximum db connection etc)
• Explore and leverage CloudFormation Templates for Setup (i.e. setting up a MongoDB

production cluster) for non managed services.

4

Managed and Non Managed Services

Plan & Execute
• Plan for Standalone VM Migration – Exporting docker images to Amazon ECR registry
• Plan for Managed Instances – Create Auto Scaler Group, Launch configuration, Heath

checks and Load Balancer configuration.

Best practices
• Create your Base AMI which can be used as a template for Auto-Scalable Launch

configuration.
• Create Health configurations based on services (i.e. APIs, websites etc)
• Setup monitoring alerts for Auto Scaling (i.e. number of active instances, CPU usages

etc)

5

VM Migration – Standalone and Managed Instances

Plan & Execute
• Migrate API gateway to AWS API Gateway - API Gateway supports importing and

exporting APIs using the OpenAPI 2.0/3.0 API specification
• Create Routes and Integration targets (i.e. LoadBalancer).

Best practices
• Leverage CloudWatch metrics and CloudWatch Logs to monitor HTTP APIs (enable

detail monitoring)

6

API Gateway / Endpoint

Plan & Execute
• Adhoc and Event based applications/Jobs – Leverage AWS Serverless Capabilities

(Lambda, AWS Fargate etc)
• Create deployment package for Lambda. For containers, leverage AWS Fargate.
• Integrate Lambda functions for events (i.e. trigger Lambda functions on files uploads in

AWS Bucket)

Best practices
• Package all of your dependencies (including SDK) with your deployment package.
• Understand how costs are calculated - (i.e. don’t use recursions)
• Link to best practices - https://docs.aws.amazon.com/lambda/latest/dg/best-

practices.html

7

Jobs – Adhoc and Event Based

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Plan & Execute
• Understand what additional AWS services that you can leverage for hardening your

production instance - Elastic Load Balancer, AWS Certificate Manager, WAF (Web
application Firewall) etc

• AWS Certificate Manager provides free public certificates to be used with Load
Balancers and API Gateway.

Best practices
• Run production in a separate sub organization/project. Restrict access to the sub

organization (i.e. create policy and apply to suborganization to provide read only
access)

• Configure multiple availability zones and corresponding public/private subnets.
• Enable CloudTrail for compliance and audits
• Create and review Security groups and Network ACLs.
• Use bastion host and ssh tunnelling for secure connectivity.
• Creating enough alarms events based on metrics (i.e. latency for APIs, 5xx errors, DB

active connections, Lambda execution time etc)

8

Hardening the Production Setup

Plan & Execute
• Plan if you need centralized logging .By default, AWS services (Lambda, RDS, API

Gateway etc.) logs to AWS CloudWatch
• Application logs from VM can be logged via installing the CloudWatch agent.

CloudWatch agent can be installed in your base AMI.
• Use your existing CI/CS tooling (Jenkins, GitHub etc) and push images to AWS ECR.

Deploy images from ECR. If you are building from scratch, look at AWS Offerings like
CodePipeline

Best practices
• Create CloudWatch alarms for sending alerts based on metrics (i.e. high/low CPU

utilization, API latency etc).
• Check retention policy for AWS CloudWatch logs. Create lifecycle policy for logs

archival.

9

Logging, Monitoring and CI/CD

