Migration Strategy

Migration Plan

« Organising Projects, Billing and Roles
« Setting up VPC
« Managed and Non managed Services
— Database Migration / No-SQL (MongoDB) Migration
« VM Migration — Standalone and Managed Instances
- APl Gateway / Endpoint
« Jobs - Adhoc and Event Based
« Hardening the Production setup — Load Balancer, Certificates, WAF etc
- Logging - Central Logging and Backups
« Monitoring — Setting up alerts on CPU usages etc
« CI/CD Pipeline - Continuous integration and deployment

Organising Projects, Billing and Roles

Plan & Execute

Define an AWS Organization to centrally govern your environment
Create a root organization and sub organizations to manage projects

Best practices

Create multiple projects (i.e. development, testing, production) and client specific
projects.

Don’t allocate any resources to the root account

Get visibility of billing per project and setup alerts for budget controls.
Use Principle of Least Privilege with IAM (i.e. allocate minimal access to perform tasks)

Setup VPC

Plan & Execute

Setup VPC for resource isolation
Create unique subnets (i.e. CIDR range) for all the projects.

Best practices

Setup VPC peering for sharing of resources across projects. (CIDR block cannot
conflicts with peer VPC, so follow point 2 above as a best practice)

Keep all VPC instances in private subnets and front end through a Load Balancer.

Plan for at least 2 availability zones (and more based on your requirements) for fault
tolerance/scalability.

Setup network ACLs as firewalls to control inbound and outbound traffic at the subnet
level.

Managed and Non Managed Services

Plan & Execute

Plan for Database Migration — what versions of managed database (i.e. RDS) is
available.

Plan for non managed services - (i.e. Choosing MongoDB vs DynamoDB)

Best practices

Setup up high availability for RDS and periodic database backups.

Change default DB Parameter Groups group based on your RDS instance (i.e. logging
query > 2 second etc) . This requires a DB restart.

Setup monitoring alerts on DB (i.e. maximum db connection etc)

Explore and leverage CloudFormation Templates for Setup (i.e. setting up a MongoDB
production cluster) for non managed services.

VM Migration — Standalone and Managed Instances

Plan & Execute

Plan for Standalone VM Migration — Exporting docker images to Amazon ECR registry

Plan for Managed Instances — Create Auto Scaler Group, Launch configuration, Heath
checks and Load Balancer configuration.

Best practices

Create your Base AMI which can be used as a template for Auto-Scalable Launch
configuration.

Create Health configurations based on services (i.e. APIs, websites etc)

Setup monitoring alerts for Auto Scaling (i.e. number of active instances, CPU usages
etc)

APl Gateway / Endpoint

Plan & Execute

Migrate API gateway to AWS API Gateway - API Gateway supports importing and
exporting APIs using the OpenAPI 2.0/3.0 API specification

Create Routes and Integration targets (i.e. LoadBalancer).

Best practices

Leverage CloudWatch metrics and CloudWatch Logs to monitor HTTP APIs (enable
detail monitoring)

Jobs — Adhoc and Event Based

Plan & Execute

Adhoc and Event based applications/Jobs — Leverage AWS Serverless Capabilities
(Lambda, AWS Fargate etc)

Create deployment package for Lambda. For containers, leverage AWS Fargate.

Integrate Lambda functions for events (i.e. trigger Lambda functions on files uploads in
AWS Bucket)

Best practices
Package all of your dependencies (including SDK) with your deployment package.
Understand how costs are calculated - (i.e. don’t use recursions)

Link to best practices - https://docs.aws.amazon.com/lambda/latest/dg/best-
practices.html

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Hardening the Production Setup

Plan & Execute

Understand what additional AWS services that you can leverage for hardening your
production instance - Elastic Load Balancer, AWS Certificate Manager, WAF (Web
application Firewall) etc

AWS Certificate Manager provides free public certificates to be used with Load
Balancers and API Gateway.

Best practices

Run production in a separate sub organization/project. Restrict access to the sub
organization (i.e. create policy and apply to suborganization to provide read only

access)

Configure multiple availability zones and corresponding public/private subnets.
Enable CloudTrail for compliance and audits

Create and review Security groups and Network ACLSs.

Use bastion host and ssh tunnelling for secure connectivity.

Creating enough alarms events based on metrics (i.e. latency for APIs, 5xx errors, DB
active connections, Lambda execution time etc)

8

Logging, Monitoring and CI/CD

Plan & Execute
Plan if you need centralized logging .By default, AWS services (Lambda, RDS, API
Gateway etc.) logs to AWS CloudWatch
Application logs from VM can be logged via installing the CloudWatch agent.
CloudWatch agent can be installed in your base AMI.

Use your existing CI/CS tooling (Jenkins, GitHub etc) and push images to AWS ECR.
Deploy images from ECR. If you are building from scratch, look at AWS Offerings like

CodePipeline

Best practices
Create CloudWatch alarms for sending alerts based on metrics (i.e. high/low CPU
utilization, API latency etc).
Check retention policy for AWS CloudWatch logs. Create lifecycle policy for logs
archival.

